Let’s Make a Game!

Step 3: Score and Timer Display

By Darrell Spice, Jr. (adapted by Duane Alan Hahn, a.k.a. Random Terrain)

As an Amazon Associate I earn from qualifying purchases.

Original Blog Entry

After getting a stable display, I like to implement the routines for displaying the score. You can see that in the first builds of Frantic, Medieval Mayhem, and Space Rocks. Even though we're not ready to show the player's score, the display is very useful for showing diagnostic informationsuch as this build of Frantic which uses it to show which sprites are colliding with the player.


To draw the score we're going to use the playfield graphics. The playfield pattern is comprised of 20 bits stored in 3 bytes of the TIA.


Andrew Davie posted this rather nice diagram in his 2600 Programming For Newbies tutorial which shows how that works:

Playfield Wierdness

The 20 bits are either repeated or reflected to draw the 20 bits on the right half of the screen.


For our game, a two digit score and a two digit timer will meet our requirements. We could show a single digit each in PF1 and PF2, but due to the reversed output of PF2 that would mean we'd need to create both normal and mirrored digit graphics. Instead, we're going to create digit graphics that are 3 bits across, which will allow us to show two digits using PF1. You may have seen the graphics in one of my blog entries with the revised mode file for jEdit. Each digit appears twice as we can use a simple mask to get the tens (AND #$F0) and ones (AND #$0F) digits. If we only saved the image as the ones position we'd need to apply 4 shift instructions to create a tens position image.




PF1 is displayed twice on the screen and if we time it correctly we can change the contents of PF1 so that both sides of the screen are different. Andrew Davie posted another handy diagram that shows the timing:


Timing Diagram


In looking at the diagram we can figure out the update times required for each instance of PF1.


As mentioned before, the RIOT chip in the Atari 2600 stands for RAM, Input/Output and Timer. For this update we're going to look at the RAM and Input.


To show the score we need to keep track of a few things, so let's allocate some space in RAM:

        ORG $80             
    ; Holds 2 digit score, stored as BCD (Binary Coded Decimal)
Score:          ds 1    ; stored in $80
    ; Holds 2 digit timer, stored as BCD
Timer:          ds 1    ; stored in $81
    ; Offsets into digit graphic data
DigitOnes:      ds 2    ; stored in $82-$83, DigitOnes = Score, DigitOnes+1 = Timer
DigitTens:      ds 2    ; stored in $84-$85, DigitTens = Score, DigitTens+1 = Timer
    ; graphic data ready to put into PF1
ScoreGfx:       ds 1    ; stored in $86
TimerGfx:       ds 1    ; stored in $87
    ; scratch variable
Temp:           ds 1    ; stored in $88

Vertical Blank is now doing a little bit of work:

        jsr SetObjectColors
        jsr PrepScoreForDisplay
        rts             ; ReTurn from Subroutine

When the macro CLEAN_START initialized the Atari's hardware, it set all the colors to black. So we need to set the object colors if we want to see anything. This routine also reads the state of the console switches (via one of RIOT's Input registers) in order to determine if the player selected Color or Black & White:

        ldx #3          ; we're going to set 4 colors (0-3)
        ldy #3          ; default to the color entries in the table (0-3)
        lda SWCHB       ; read the state of the console switches
        and #%00001000  ; test state of D3, the TV Type switch
        bne SOCloop     ; if D3=1 then use color
        ldy #7          ; else use the b&w entries in the table (4-7)
        lda Colors,y    ; get the color or b&w value
        sta COLUP0,x    ; and set it
        dey             ; decrease Y
        dex             ; decrease X 
        bpl SOCloop     ; Branch PLus (positive)
        rts             ; ReTurn from Subroutine
        .byte $86   ; blue       - goes into COLUP0, color for player0 and missile0
        .byte $C6   ; green      - goes into COLUP1, color for player1 and missile1
        .byte $46   ; red        - goes into COLUPF, color for playfield and ball
        .byte $00   ; black      - goes into COLUBK, color for background
        .byte $0E   ; white      - goes into COLUP0, color for player0 and missile0
        .byte $06   ; dark grey  - goes into COLUP1, color for player1 and missile1
        .byte $0A   ; light grey - goes into COLUPF, color for playfield and ball
        .byte $00   ; black      - goes into COLUBK, color for background

The score and timer will be stored using BCD (Binary Coded Decimal) but for now we'll treat and display them as hexadecimal values (that's why the digit graphics are 0-9 then A-F). This routine takes the upper and lower nybble (4 bits) of the Score and Timer and multiplies them by 5 in order to get the offset into the digit graphic data. The 6507 does not have a multiply command, though it does have a shift feature which is equivalent to *2. If a nybble is value X then X * 2 * 2 + X is the same as X * 5:

    ; for testing purposes, change the values in Timer and Score
        inc Timer       ; INCrement Timer by 1
        bne PSFDskip    ; Branch Not Equal to 0
        inc Score       ; INCrement Score by 1 if Timer just rolled to 0
        ldx #1          ; use X as the loop counter for PSFDloop
        lda Score,x     ; LoaD A with Timer(first pass) or Score(second pass)
        and #$0F        ; remove the tens digit
        sta Temp        ; Store A into Temp
        asl             ; Accumulator Shift Left (# * 2)
        asl             ; Accumulator Shift Left (# * 4)
        adc Temp        ; ADd with Carry value in Temp (# * 5)
        sta DigitOnes,x  ; STore A in DigitOnes+1(first pass) or DigitOnes(second pass)
        lda Score,x     ; LoaD A with Timer(first pass) or Score(second pass)
        and #$F0        ; remove the ones digit
        lsr             ; Logical Shift Right (# / 2)
        lsr             ; Logical Shift Right (# / 4)
        sta Temp        ; Store A into Temp
        lsr             ; Logical Shift Right (# / 8)
        lsr             ; Logical Shift Right (# / 16)
        adc Temp        ; ADd with Carry value in Temp ((# / 16) * 5)
        sta DigitTens,x ; STore A in DigitTens+1(first pass) or DigitTens(second pass)
        dex             ; DEcrement X by 1
        bpl PSFDloop    ; Branch PLus (positive) to PSFDloop
        rts             ; ReTurn from Subroutine

The Kernel's been modified so it now uses the data in DigitOnes and DigitTens to update PF1. Each line of graphic data is output twice so the digits are drawn over 10 scanlines which gives them a better appearance than if they had been drawn over 5 scanlines.

ldx #5

ScoreLoop:              ;   43 - cycle after bpl ScoreLoop
        ldy DigitTens   ; 3 46 - get the tens digit offset for the Score
        lda DigitGfx,y  ; 5 51 -   use it to load the digit graphics
        and #$F0        ; 2 53 -   remove the graphics for the ones digit
        sta ScoreGfx    ; 3 56 -   and save it
        ldy DigitOnes   ; 3 59 - get the ones digit offset for the Score
        lda DigitGfx,y  ; 5 64 -   use it to load the digit graphics
        and #$0F        ; 2 66 -   remove the graphics for the tens digit
        ora ScoreGfx    ; 3 69 -   merge with the tens digit graphics
        sta ScoreGfx    ; 3 72 -   and save it
        sta WSYNC       ; 3 75 - wait for end of scanline
        sta PF1         ; 3  3 - @66-28, update playfield for Score dislay
        ldy DigitTens+1 ; 3  6 - get the left digit offset for the Timer
        lda DigitGfx,y  ; 5 11 -   use it to load the digit graphics
        and #$F0        ; 2 13 -   remove the graphics for the ones digit
        sta TimerGfx    ; 3 16 -   and save it
        ldy DigitOnes+1 ; 3 19 - get the ones digit offset for the Timer
        lda DigitGfx,y  ; 5 24 -   use it to load the digit graphics
        and #$0F        ; 2 26 -   remove the graphics for the tens digit
        ora TimerGfx    ; 3 29 -   merge with the tens digit graphics
        sta TimerGfx    ; 3 32 -   and save it
        jsr Sleep12     ;12 44 - waste some cycles
        sta PF1         ; 3 47 - @39-54, update playfield for Timer display
        ldy ScoreGfx    ; 3 50 - preload for next scanline 
        sta WSYNC       ; 3 53 - wait for end of scanline
        sty PF1         ; 3  3 - @66-28, update playfield for the Score display
        inc DigitTens   ; 5  8 - advance for the next line of graphic data
        inc DigitTens+1 ; 5 13 - advance for the next line of graphic data
        inc DigitOnes   ; 5 18 - advance for the next line of graphic data
        inc DigitOnes+1 ; 5 23 - advance for the next line of graphic data
        jsr Sleep12     ;12 35 - waste some cycles
        dex             ; 2 37 - decrease the loop counter
        sta PF1         ; 3 40 - @39-54, update playfield for the Timer display
        bne ScoreLoop   ; 2 42 - (3 43) if dex != 0 then branch to ScoreLoop
        sta WSYNC       ; 3 45 - wait for end of scanline
        stx PF1         ; 3  3 - x = 0, so this blanks out playfield        
        sta WSYNC       ; 3  6 - wait for end of scanline

Score and Timer:

Score and Timer Color

When TV Type switched to B&W:

Score and Timer B&W

You'll notice that the score and timer are different colors even though they're both drawn using the playfield. This is because I've modified Vertical Sync to turn on SCORE mode. SCORE mode tells the TIA to use the color of player0 for the left half of the playfield and the color of player1 for the right half.

        lda #2      ; LoaD Accumulator with 2 so D1=1
        ldx #49     ; LoaD X with 49
        sta WSYNC   ; Wait for SYNC (halts CPU until end of scanline)
        sta VSYNC   ; Accumulator D1=1, turns on Vertical Sync signal
        stx TIM64T  ; set timer to go off in 41 scanlines (49 * 64) / 76
        sta CTRLPF  ; D1=1, playfield now in SCORE mode
        rts         ; ReTurn from Subroutine

The ROM and the source are at the bottom of my blog entry.




Other Assembly Language Tutorials

Be sure to check out the other assembly language tutorials and the general programming pages on this web site.


Amazon Stuff


< Previous Step



Next Step >






Table of Contents for Let’s Make a Game!


Step 1: Generate a Stable Display

Step 2: Timers

Step 3: Score and Timer Display

Step 4: 2 Line Kernel

Step 5: Automate Vertical Delay

Step 6: Spec Change

Step 7: Draw the Playfield

Step 8: Select and Reset Support

Step 9: Game Variations

Step 10: “Random Numbers”

Step 11: Add the Ball Object

Step 12: Add the Missile Objects

Step 13: Add Sound Effects

Step 14: Add Animation





Useful Links

Easy 6502 by Nick Morgan

How to get started writing 6502 assembly language. Includes a JavaScript 6502 assembler and simulator.



Atari Roots by Mark Andrews (Online Book)

This book was written in English, not computerese. It's written for Atari users, not for professional programmers (though they might find it useful).



Machine Language For Beginners by Richard Mansfield (Online Book)

This book only assumes a working knowledge of BASIC. It was designed to speak directly to the amateur programmer, the part-time computerist. It should help you make the transition from BASIC to machine language with relative ease.

The Six Instruction Groups

The 6502 Instruction Set broken down into 6 groups.

6502 Instruction Set

Nice, simple instruction set in little boxes (not made out of ticky-tacky).



The Second Book Of Machine Language by Richard Mansfield (Online Book)

This book shows how to put together a large machine language program. All of the fundamentals were covered in Machine Language for Beginners. What remains is to put the rules to use by constructing a working program, to take the theory into the field and show how machine language is done.

6502 Instruction Set

An easy-to-read page from The Second Book Of Machine Language.



6502 Instruction Set with Examples

A useful page from Assembly Language Programming for the Atari Computers.

Continually strives to remain the largest and most complete source for 6502-related information in the world.

NMOS 6502 Opcodes

By John Pickens. Updated by Bruce Clark.



Guide to 6502 Assembly Language Programming by Andrew Jacobs

Below are direct links to the most important pages.


Goes over each of the internal registers and their use.

Instruction Set

Gives a summary of whole instruction set.

Addressing Modes

Describes each of the 6502 memory addressing modes.

Instruction Reference

Describes the complete instruction set in detail.



Stella Programmer's Guide

HTMLified version.



Nick Bensema's Guide to Cycle Counting on the Atari 2600

Cycle counting is an important aspect of Atari 2600 programming. It makes possible the positioning of sprites, the drawing of six-digit scores, non-mirrored playfield graphics and many other cool TIA tricks that keep every game from looking like Combat.



How to Draw A Playfield by Nick Bensema

Atari 2600 programming is different from any other kind of programming in many ways. Just one of these ways is the flow of the program.



Cart Sizes and Bankswitching Methods by Kevin Horton

The "bankswitching bible." Also check out the Atari 2600 Fun Facts and Information Guide and this post about bankswitching by SeaGtGruff at AtariAge.



Atari 2600 Specifications

Atari 2600 programming specs (HTML version).



Atari 2600 Programming Page (AtariAge)

Links to useful information, tools, source code, and documentation.




Atari 2600 programming site based on Garon's "The Dig," which is now dead.



TIA Color Charts and Tools

Includes interactive color charts, an NTSC/PAL color conversion tool, and Atari 2600 color compatibility tools that can help you quickly find colors that go great together.



The Atari 2600 Music and Sound Page

Adapted information and charts related to Atari 2600 music and sound.



Game Standards and Procedures

A guide and a check list for finished carts.




A multi-platform Atari 2600 VCS emulator. It has a built-in debugger to help you with your works in progress or you can use it to study classic games. Stella finally got Atari 2600 quality sound in December of 2018. Until version 6.0, the game sounds in Stella were mostly OK, but not great. Now it's almost impossible to tell the difference between the sound effects in Stella and a real Atari 2600.




A very good emulator that can also be embedded on your own web site so people can play the games you make online. It's much better than JStella.



batari Basic Commands

If assembly language seems a little too hard, don't worry. You can always try to make Atari 2600 games the faster, easier way with batari Basic.



Back to Top



In Case You Didn't Know


Trump's Jab = Bad

Did you know that Trump's rushed Operation Warp Speed rona jab has less than one percent overall benefit? Some people call it the depopulation jab and it has many possible horrible side effects (depending on the lot number, concentration, and if it was kept cold). Remember when many Democrats were against Trump's Operation Warp Speed depopulation jab, then they quickly changed their minds when Biden flip-flopped and started pushing it?


Some brainwashed rona jab cultists claim that there are no victims of the jab, but person after person will post what the jab did to them, a friend, or a family member on web sites such as Facebook and they'll be lucky if they don't get banned soon after. Posting the truth is “misinformation” don't you know. Awakened sheep might turn into lions, so powerful people will do just about anything to keep the sheep from waking up.


Check out these videos:

If You Got the COVID Shot and Aren't Injured, This May Be Why

Thought Experiment: What Happens After the Jab?

The Truth About Polio and Vaccines

What Is Causing the Mysterious Self-Assembling Non-Organic Clots and Sudden Deaths?

Full Video of Tennessee House of Representatives Health Subcommittee Hearing Room 2 (The Doctors Start Talking at 33:28)



H Word and I Word = Good

Take a look at my page about the famous demonized medicines called The H Word and Beyond. You might also want to look at my page called Zinc and Quercetin. My sister and I have been taking zinc and quercetin since the summer of 2020 in the hopes that they would scare away the flu and other viruses (or at least make them less severe). Here's one more page to check out: My Sister's Experiences With COVID-19.



B Vitamins = Good

Some people appear to have a mental illness because they have a vitamin B deficiency. For example, the wife of a guy I used to chat with online had severe mood swings which seemed to be caused by food allergies or intolerances. She would became irrational, obnoxious, throw tantrums, and generally act like she had a mental illness. The horrid behavior stopped after she started taking a vitamin B complex. I've been taking Jarrow B-Right (#ad) for many years. It makes me much easier to live with.



Soy = Bad

Unfermented soy is bad! “When she stopped eating soy, the mental problems went away.” Fermented soy doesn't bother me, but the various versions of unfermented soy (soy flour, soybean oil, and so on) that are used in all kinds of products these days causes a negative mental health reaction in me that a vitamin B complex can't tame. The sinister encroachment of soy has made the careful reading of ingredients a necessity.



Wheat = Bad

If you are overweight, have type II diabetes, or are worried about the condition of your heart, check out the videos by Ken D Berry, William Davis, and Ivor Cummins. It seems that most people should avoid wheat, not just those who have a wheat allergy or celiac disease. Check out these books: Undoctored (#ad), Wheat Belly (#ad), and Eat Rich, Live Long (#ad).



Negative Ions = Good

Negative ions are good for us. You might want to avoid positive ion generators and ozone generators. A plain old air cleaner is better than nothing, but one that produces negative ions makes the air in a room fresher and easier for me to breathe. It also helps to brighten my mood.



Litterbugs = Bad

Never litter. Toss it in the trash or take it home. Do not throw it on the ground. Also remember that good people clean up after themselves at home, out in public, at a campsite and so on. Leave it better than you found it.



Climate Change Cash Grab = Bad

Seems like more people than ever finally care about water, land, and air pollution, but the climate change cash grab scam is designed to put more of your money into the bank accounts of greedy politicians. Those power-hungry schemers try to trick us with bad data and lies about overpopulation while pretending to be caring do-gooders. Trying to eliminate pollution is a good thing, but the carbon footprint of the average law-abiding human right now is actually making the planet greener instead of killing it.


Eliminating farms and ranches, eating bugs, getting locked down in 15-minute cities, owning nothing, using digital currency (with expiration dates) that is tied to your social credit score, and paying higher taxes will not make things better and “save the Earth.” All that stuff is part of an agenda that has nothing to do with making the world a better place for the average person. It's all about control, depopulation, and making things better for the ultra-rich. They just want enough peasants left alive to keep things running smoothly.


Watch these two videos for more information:

CO2 is Greening The Earth

The Climate Agenda



How to Wake Up Normies

Charlie Robinson had some good advice about waking up normies (see the link to the video below). He said instead of verbally unloading or being nasty or acting like a bully, ask the person a question. Being nice and asking a question will help the person actually think about the subject.


Interesting videos:

Charlie Robinson Talks About the Best Way to Wake Up Normies

Georgia Guidestones Explained

The Men Who Own Everything


View this page and any external web sites at your own risk. I am not responsible for any possible spiritual, emotional, physical, financial or any other damage to you, your friends, family, ancestors, or descendants in the past, present, or future, living or dead, in this dimension or any other.


Use any example programs at your own risk. I am not responsible if they blow up your computer or melt your Atari 2600. Use assembly language at your own risk. I am not responsible if assembly language makes you cry or gives you brain damage.


Home Inventions Quotations Game Design Atari Memories Personal Pages About Site Map Contact Privacy Policy Tip Jar