Useful
Inventions
Favorite
Quotes
Game
Design
Atari
Memories
Personal
Pages

Atari 2600 Programming for Newbies

Session 25: Advanced Timeslicing

By Andrew Davie (adapted by Duane Alan Hahn, a.k.a. Random Terrain)

As an Amazon Associate I earn from qualifying purchases.

Page Table of Contents

Original Session

Time is tight. Really tight! The general approach has been to think of the TV frame as the limiting factor for the capabilities of the machine. Whatever you can do in 'one frame' (i.e, nominally @60Hz on NTSC or @50Hz on PAL) … that's IT. So in fact you can work out exactly how much time you have to do stuff. As we've seen in earlier tutorials, the '2600 programmer has to pump data out to the TIA in sync with the TV as it's drawing scanlines. You need to feed the TV scanlines to draw a proper picture. There are 76 cycles per scanline, and 262 scanlines per standard TV frame (312 for PAL). So 76 * 262 = 19912 cycles per frame. Multiply that by the NTSC frame rate (actually 59.94Hz) and you get … 1193525.28 (i.e., there's our 1.19MHz CPU clock speed). It all makes sense.

 

So, just 262 lines. The visible screen is smaller than that, of course (usually 192 scanlines of actual graphics)so we only need to pump data to the screen for a smaller number of lines. The rest is black, nothing to see. Below is a good visual diagram of where the time goes.

 

TV Timing

 

So, during those blank lines, the CPU doesn't have to pump data to the screen. In fact these two major areas of 'blackness' (that is, the vertical blank, and the overscan) account for 37 scanlines (*76 = 2812 cycles) and 30 scanlines (*76 = 2280 cycles). Now that's not exactly swimming in available CPU capacity but it's better than nothing. So the general usage of these blank areas has been to whack in 'stuff' that takes a fair bit of time to do.

 

The problem is, you can't whack in too MUCH stuff. Because when those 37 scanlines of time have elapsed, you MUST be writing to the TIA again to make sure the next frame is displaying properly. Same for the 30 lines of overscan. There's no getting around it; you take too much time, and you stuff up the timing, and consequently the TV picture will roll, judderjitter and basically look horrible. The hard and fast rule has been to simply stay within the limitation, or to reduce the number of visible scanlines to give more processing time for doing more complex STUFF. Each scanline of visible data you sacrificed, you got 76 scanlines of available time to do your stuff. A compromise.

 

 

 

 

 

Timer Registers

Fortunately, we have the timer registers. These are single countdown registers that will regularly decrement a value written to them. I only use TIM64Tthis one counts 64 cycle blocks. If I write 10 to it, then I would expect it to reach 0 some 640 cycles later. So, the usage has been to calculate the amount of time before the screen drawing has to (re)commence, divide by 64, and put that value in TIM64T. By reading INTIM and waiting until that reaches 0, you effectively wait the right number of cycles. You can do your (variable time) 'stuff' and not really care about how long it takes (as long as it doesn't take TOO long), and after it's finish you enter a tight loop just reading INTIM and waiting for it to go to 0. When it goes to 0, fire off a WSYNC and then begin the TV frame drawing once again.

 

That's how it's BEEN done, but that's not how I did it in Boulder Dash!

 

 

 

 

 

INTIM

The INTIM register effectively tells you not only if you're out of time, but also exactly how MUCH time you have remaining (in blocks of 64 cycles if you're using TIM64T). So, if you think about it, you can actually make decisions about if you should call a subroutine based on this value. For example, say you had a small routine which you know takes (say) 1000 cycles to run. That's 1000/64 units (= 15.625). So, if INTIM was reading 16 or greater you KNOW you can call that subroutine and not run out of time!  This gets rather nice. Given a guaranteed maximum run-time for any subroutine (and you get this by cycle-counting the subroutine very very carefully), you can use this knowledge to determine if/when it's appropriate to call that subroutine. Furthermore, after you HAVE called the subroutine, you can repeat the processlook at INTIM and determine if there's enough time to run OTHER subroutines.

 

 

 

 

Asynchronous System

So the whole concept of '2600 programming basically changes here. Now we have an asynchronous system, where you have a queue of 'tasks' that you have to do. These tasks in Boulder Dash are generally creature logic (process a boulder, the amoeba, etc). Each of these tasks are cycle-counted so we know exactly how long the worst-case is. And each of these tasks is only run if there's available time. If not, then they simply return and in the next chunk of available time, they will be called again.

 

So, this is how the timeslicing engine works! Every part of the game logic is broken down into as small (quick) units of code as practicable. Rather than have the whole processing for an object in a single huge and costly block of code, where possible these are broken down into even smaller 'sub-tasks'. And those tasks are effectively placed in a queue which is processed by the task manager. The task manager is a tight loop which pulls a task off the task stack, vectors to the appropriate handler for the task, and repeats. The tasks themselves are responsible for deciding if there's enough time for them to do their own stuff (i.e., fairly object-oriented in that regard). If a task doesn't think there's enough time (again, by simply reading INTIM and comparing with it's own timing equate), it simply returns. If it has enough time to do its stuff, it does so and makes sure that it's no longer on the task queue. Tasks can even add other tasks to the queue, for later processing!

 

The upshot of all this is that a game doesn't have to be able to handle the very worst case most expensive thing ever in a single frame. The tasks split across multiple frames, if needed. In other words, there's now a separation between game logic (running over multiple frames if required) and the frame display (running exactly at the TV frame rate). Yes, Virginia, '2600 games can slow down. Now for most situations this isn't idealbut in reality it doesn't really matter. Most of the gameplay for the '2600 Boulder Dash just never slows down. But occasionally, very occasionally (say, when an amoeba turns into 200 boulders and they all start falling at the same time)well, the system can handle it. Because although it may only have enough processing power to handle (say) 20 boulders in a single frame, that's OK, because the other boulders are effectively stacked and processed the next frame. And the queue may be really big for a few game loops, and the game will lag... probably not very noticeably... but when the queue is empty again, everything is back to running full speed.

 

 

 

 

 

Summary

So the above is the secret to making much more complex games than have heretofore been produced on the machine. You CAN keep the TV display going full speed (60Hz) while doing processing-intensive game logic. And you CAN do very very very complex game logic taking absolutely heaps of processing time. The trick, as noted, is to separate out the two so they are not synchronousand to divide the complex logic into discrete, very quick, sub-components.

 

Divide and conquer!

 

 

 

Other Assembly Language Tutorials

Be sure to check out the other assembly language tutorials and the general programming pages on this web site.

 

Amazon Stuff

 

< Previous Session

 

 

Back to the Beginning >

 

 

 

 

Session Links

Session 1: Start Here

Session 2: Television Display Basics

Sessions 3 & 6: The TIA and the 6502

Session 4: The TIA

Session 5: Memory Architecture

Session 7: The TV and our Kernel

Session 8: Our First Kernel

Session 9: 6502 and DASM - Assembling the Basics

Session 10: Orgasm

Session 11: Colorful Colors

Session 12: Initialization

Session 13: Playfield Basics

Session 14: Playfield Weirdness

Session 15: Playfield Continued

Session 16: Letting the Assembler do the Work

Sessions 17 & 18: Asymmetrical Playfields (Parts 1 & 2)

Session 19: Addressing Modes

Session 20: Asymmetrical Playfields (Part 3)

Session 21: Sprites

Session 22: Sprites, Horizontal Positioning (Part 1)

Session 22: Sprites, Horizontal Positioning (Part 2)

Session 23: Moving Sprites Vertically

Session 24: Some Nice Code

Session 25: Advanced Timeslicing

 

 

 

 

Useful Links

Easy 6502 by Nick Morgan

How to get started writing 6502 assembly language. Includes a JavaScript 6502 assembler and simulator.

 

 

Atari Roots by Mark Andrews (Online Book)

This book was written in English, not computerese. It's written for Atari users, not for professional programmers (though they might find it useful).

 

 

Machine Language For Beginners by Richard Mansfield (Online Book)

This book only assumes a working knowledge of BASIC. It was designed to speak directly to the amateur programmer, the part-time computerist. It should help you make the transition from BASIC to machine language with relative ease.

The Six Instruction Groups

The 6502 Instruction Set broken down into 6 groups.

6502 Instruction Set

Nice, simple instruction set in little boxes (not made out of ticky-tacky).

 

 

The Second Book Of Machine Language by Richard Mansfield (Online Book)

This book shows how to put together a large machine language program. All of the fundamentals were covered in Machine Language for Beginners. What remains is to put the rules to use by constructing a working program, to take the theory into the field and show how machine language is done.

6502 Instruction Set

An easy-to-read page from The Second Book Of Machine Language.

 

 

6502 Instruction Set with Examples

A useful page from Assembly Language Programming for the Atari Computers.

 

 

6502.org

Continually strives to remain the largest and most complete source for 6502-related information in the world.

NMOS 6502 Opcodes

By John Pickens. Updated by Bruce Clark.

 

 

Guide to 6502 Assembly Language Programming by Andrew Jacobs

Below are direct links to the most important pages.

Registers

Goes over each of the internal registers and their use.

Instruction Set

Gives a summary of whole instruction set.

Addressing Modes

Describes each of the 6502 memory addressing modes.

Instruction Reference

Describes the complete instruction set in detail.

 

 

Stella Programmer's Guide

HTMLified version.

 

 

Nick Bensema's Guide to Cycle Counting on the Atari 2600

Cycle counting is an important aspect of Atari 2600 programming. It makes possible the positioning of sprites, the drawing of six-digit scores, non-mirrored playfield graphics and many other cool TIA tricks that keep every game from looking like Combat.

 

 

How to Draw A Playfield by Nick Bensema

Atari 2600 programming is different from any other kind of programming in many ways. Just one of these ways is the flow of the program.

 

 

Cart Sizes and Bankswitching Methods by Kevin Horton

The "bankswitching bible." Also check out the Atari 2600 Fun Facts and Information Guide and this post about bankswitching by SeaGtGruff at AtariAge.

 

 

Atari 2600 Specifications

Atari 2600 programming specs (HTML version).

 

 

Atari 2600 Programming Page (AtariAge)

Links to useful information, tools, source code, and documentation.

 

 

MiniDig

Atari 2600 programming site based on Garon's "The Dig," which is now dead.

 

 

TIA Color Charts and Tools

Includes interactive color charts, an NTSC/PAL color conversion tool, and Atari 2600 color compatibility tools that can help you quickly find colors that go great together.

 

 

The Atari 2600 Music and Sound Page

Adapted information and charts related to Atari 2600 music and sound.

 

 

Game Standards and Procedures

A guide and a check list for finished carts.

 

 

Stella

A multi-platform Atari 2600 VCS emulator. It has a built-in debugger to help you with your works in progress or you can use it to study classic games. Stella finally got Atari 2600 quality sound in December of 2018. Until version 6.0, the game sounds in Stella were mostly OK, but not great. Now it's almost impossible to tell the difference between the sound effects in Stella and a real Atari 2600.

 

 

JAVATARI

A very good emulator that can also be embedded on your own web site so people can play the games you make online. It's much better than JStella.

 

 

batari Basic Commands

If assembly language seems a little too hard, don't worry. You can always try to make Atari 2600 games the faster, easier way with batari Basic.

 

 

Atari 2600 BASIC

If assembly language is too hard for you, try batari Basic. It's a BASIC-like language for creating Atari 2600 games. It's the faster, easier way to make Atari 2600 games.

Try batari Basic
THE COURAGE TO FACE COVID-19 2000 Mules DVD The Great Awakening

Back to Top

 

 

In Case You Didn't Know

 

Trump's Jab = Bad

Did you know that Trump's rushed experimental rona jab has less than one percent overall benefit? It also has many possible horrible side effects. Some brainwashed rona jab cultists claim that there are no victims of the jab, but person after person will post what the jab did to them, a friend, or a family member on web sites such as Facebook and Twitter and they'll be lucky if they don't get banned soon after. Posting the truth is “misinformation” don't you know. Awakened sheep might turn into lions, so powerful people will do just about anything to keep the sheep from waking up.

 

Check out these videos:

What is causing the mysterious self-assembling non-organic clots?

If You Got the COVID Shot and Aren't Injured, This May Be Why

Full Video of Tennessee House of Representatives Health Subcommittee Hearing Room 2 (The Doctors Start Talking at 33:28)

 

 

H Word and I Word = Good

Take a look at my page called The H Word and Beyond. You might also want to look at my page called Zinc and Quercetin. My sister and I have been taking those two supplements since summer of 2020 in the hopes that they would scare away the flu and other viruses (or at least make them less severe).

 

 

B Vitamins = Good

Some people appear to have a mental illness because they have a vitamin B deficiency. For example, the wife of a guy I used to chat with online had severe mood swings which seemed to be caused by food allergies or intolerances. She would became irrational, obnoxious, throw tantrums, and generally act like she had a mental illness. The horrid behavior stopped after she started taking a vitamin B complex. I've been taking Jarrow B-Right (#ad) for many years. It makes me much easier to live with.

 

 

Soy = Bad

Unfermented soy is bad! “When she stopped eating soy, the mental problems went away.” Fermented soy doesn't bother me, but the various versions of unfermented soy (soy flour, soybean oil, and so on) that are used in all kinds of products these days causes a negative mental health reaction in me that a vitamin B complex can't tame. The sinister encroachment of soy has made the careful reading of ingredients a necessity.

 

 

Wheat = Bad

If you are overweight, have type II diabetes, or are worried about the condition of your heart, check out the videos by Ken D Berry, William Davis, and Ivor Cummins. It seems that most people should avoid wheat, not just those who have a wheat allergy or celiac disease. Check out these books: Undoctored (#ad), Wheat Belly (#ad), and Eat Rich, Live Long (#ad).

 

 

Negative Ions = Good

Negative ions are good for us. You might want to avoid positive ion generators and ozone generators. A plain old air cleaner is better than nothing, but one that produces negative ions makes the air in a room fresher and easier for me to breathe. It also helps to brighten my mood.

 

 

Litterbugs = Bad

Never litter. Toss it in the trash or take it home. Do not throw it on the ground. Also remember that good people clean up after themselves at home, out in public, at a campsite and so on. Leave it better than you found it.

 

 

Climate Change Cash Grab = Bad

Seems like more people than ever finally care about water, land, and air pollution, but the climate change cash grab scam is designed to put more of your money into the bank accounts of greedy politicians. Those power-hungry schemers try to trick us with bad data and lies about overpopulation while pretending to be caring do-gooders. Trying to eliminate pollution is a good thing, but the carbon footprint of the average law-abiding human right now is actually making the planet greener instead of killing it.

 

Eliminating farms and ranches, eating bugs, getting locked down in 15-minute cities, owning nothing, using digital currency (with expiration dates) that is tied to your social credit score, and paying higher taxes will not make things better and “save the Earth.” All that stuff is part of an agenda that has nothing to do with making the world a better place for the average person. It's all about control, depopulation, and making things better for the ultra-rich. They just want enough peasants left alive to keep things running smoothly.

 

Watch these two YouTube videos for more information:

CO2 is Greening The Earth

The Climate Agenda

 

 

How to Wake Up Normies

Charlie Robinson had some good advice about waking up normies (see the link to the video below). He said instead of verbally unloading or being nasty or acting like a bully, ask the person a question. Being nice and asking a question will help the person actually think about the subject.

 

Interesting videos:

Charlie Robinson Talks About the Best Way to Wake Up Normies

Georgia Guidestones Explained

The Men Who Own Everything

Disclaimer

View this page and any external web sites at your own risk. I am not responsible for any possible spiritual, emotional, physical, financial or any other damage to you, your friends, family, ancestors, or descendants in the past, present, or future, living or dead, in this dimension or any other.

 

Use any example programs at your own risk. I am not responsible if they blow up your computer or melt your Atari 2600. Use assembly language at your own risk. I am not responsible if assembly language makes you cry or gives you brain damage.

 

Home Inventions Quotations Game Design Atari Memories Personal Pages About Site Map Contact Privacy Policy Tip Jar